The Incline

Motion on a ramp inclined at an angle can be analyzed using vectors.
Drawing a free body diagram is essential.

Ex. What is the acceleration of a skier down a 40° hill?

$$
\begin{aligned}
\theta=40^{\circ} \quad F_{n c t} & =F_{g x} \\
& m^{\prime}\left(a=n^{\prime} g \sin \theta\right. \\
& a=g \sin \theta \\
& a=(9.8) \sin 40^{\circ} \\
a & =6.3 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Ex. A 50 kg person slides down a slide at an angle of 50° to the horizontal. If the coefficient of friction is 0.3 between the child and the slide, what is her acceleration?

You will use a car on a ramp to determine the value of the coefficient of kinetic friction ${ }^{\text {H }}$: Don't forset the \pm for the accepted value. Youthay have: Ramp, Rulers, Stopwatch Car, Electronic Balance

What Now?

- How could you find the coefficient of static friction?
- Hmwk: p. 82 \# 2, 3; p. 83 \# 4, 6

